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The iceberg query finds data whose aggregate values exceed a pre-specified threshold. To process
an iceberg query in sensor networks, all sensor data have to be aggregated and then sensor data
whose aggregate values are smaller than the threshold are eliminated. Whether a certain sensor
datum is in the query result depends on the other sensor data values. Since sensor nodes are
distributed, communications between sensor nodes are required to know the sensor data from the
other sensor nodes. However, sensor nodes have limited energy resources and communication is a
primary source of the energy consumption. Thus, reducing the communication overhead is the most
critical issue in sensor networks. In this paper, we propose an energy-efficient iceberg query processing
technique in sensor networks. To compactly represent the data transmitted, a lossless sensor data
compression method based on the Fundamental Theorem of Arithmetic is devised. To reduce the
energy consumption caused by the number of data transmitted, a filtering-based query processing
method is devised. Using the temporal correlation of sensor data and the semantics of an iceberg
query, a prediction model is proposed. Based on the predicted future query result, sensor nodes
effectively filter out unnecessary transmissions. The experimental results confirm the effectiveness of

our approach.
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1. INTRODUCTION

Recent advances in ubiquitous computing have led to the
emergence of wireless sensor networks. Sensor networks
consist of a large number of sensor nodes and each sensor node
has capabilities of sensing, processing and communication.
They enable data collection from the physical environment
in unprecedented scales. There are various applications for
sensor networks such as environmental monitoring, industrial
maintenance and battlefield surveillance. Sensor networks
continuously generate a large amount of sensor data and not
all data may be of interest to users. For extracting meaningful
information from all sensor data, iceberg queries can be used.
An iceberg query performs an aggregate function over a set of
attributes to find data whose aggregate values exceed a certain
threshold. A key characteristic of an iceberg query is that the
number of above-threshold data is very small relative to a large
amount of input data [1]. The following query is an structured
query language (SQL) form of an iceberg query based on the
relation R(A1, A2, . . . , Ak) and a threshold T .

SELECT A1, A2, . . . , Ak , aggFunction()

FROM R

GROUP BY A1, A2, . . . , Ak

HAVING aggFunction() ≥ T

aggFunction() represents an aggregate function. Any aggregate
function can be used such as COUNT, MIN, MAX, SUM and
AVG or a certain user-defined aggregate function.

There is a challenge when we process iceberg queries in
sensor networks. It is caused by distributed data sources.
A sensor network consists of a large number of distributed
sensor nodes. Sensor data are generated by these distributed
sensor nodes. The query result is finely distributed across
all sensor nodes so that it does not appear large at any one sensor
node. Whether a certain sensor datum is in the query result
depends on the other sensor data values.A naive implementation
of processing iceberg queries is to use a centralized approach
in which all sensor data are collected by the base station, which
then applies an aggregate function over the received sensor
data. However, this causes prohibitively high communication
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2 H. Yang and C.-W. Chung

cost. Sensor nodes are usually battery-powered and it is not
easy to replace their batteries. Therefore, reducing the energy
consumption is one of the most critical issues in sensor
networks. Among the various tasks performed by a sensor
node, radio communication is a primary source of energy
consumption. Therefore, it is impractical to transmit all sensor
data to the base station for query processing.

The amount of energy spent on communication depends
on the size and the number of data transmitted. The size
of data transmitted can be reduced by data compression
techniques. However, traditional data compression techniques
are not applicable to sensor networks because of the limited
resources of sensor nodes and the distributed nature of data
generation. Usually, data compression techniques exploit the
statistical redundancy to represent data more concisely. To
find out such statistical redundancy of sensor data generated
from all sensor nodes, a large amount of historical data is
required. Since sensor nodes are distributed, transmissions
of sensor data to the base station are inevitable to gather
a large amount of historical data. This causes a lot of
communication overheads. Because of resource constraints
of sensor networks, lossy compression techniques such as
wavelets and regression have been studied to provide much
higher compression rates. However, these techniques degrade
the accuracy of sensor data [2]. For applications requiring
fine-grained sensor data, the loss of any data is inappropriate.
For such applications, it is necessary to devise a lossless data
compression method while considering the resource constraints
of sensor nodes.

The other way to reduce the communication overhead in
sensor networks is to perform an in-network aggregation [3, 4].
In this approach, a routing tree rooted at the base station
is first established, and the sensor data are then aggregated
and collected along the routing tree to the base station. By
performing computation within the network, it can reduce
the number of sensor data transmitted compared with that
of the centralized approach. The in-network aggregation can
be used to process iceberg queries. For MIN and MAX
aggregate functions, the in-network aggregation can reduce
the communication overhead by selecting a local MIN or
MAX value of sensor data and transmitting it to the parent
sensor node. However, for aggregate functions such as COUNT,
SUM and AVG, we cannot be sure about the final query
result before all sensor data are aggregated. Since the in-
network aggregation is performed along the routing topology,
a sensor node only knows the partially aggregated results
from its descendant nodes on the routing topology and does
not know the partially aggregated results from its sibling
nodes and its ancestor nodes on the routing topology. There
may exist sensor data from the other sensor nodes that will
contribute to increasing the corresponding aggregate value.
Because the iceberg query finds sensor data whose aggregate
values are above some specified threshold, local filtering
by the in-network aggregation cannot be applied to these

aggregate functions. Therefore, like the centralized approach,
sensor data whose final aggregate values are smaller than the
threshold should be transmitted to the base station anyway.
Since these data are not to be included in the query result,
transmissions of them waste the energy of sensor nodes.
Thus, for iceberg queries whose aggregate functions are
COUNT, SUM or AVG, we need an energy-efficient data
collection method while considering the semantics of the
iceberg query.

In this paper, we propose an energy-efficient iceberg query
processing technique in sensor networks. COUNT, SUM and
AVG are considered as aggregate functions of the iceberg
queries. To reduce the size of data transmitted, a lossless data
compression method is devised using prime numbers. The size
of data transmitted is reduced to the size of one sensing attribute
regardless of the number of sensing attributes specified in the
SELECT clause. To reduce the number of transmissions, a
filtering-based data collection method is devised. Since sensor
data generally have strong temporal correlations, a large portion
of the previous query result will be generated later in time.
By exploiting the temporal correlations of sensor data, we
make a prediction model for the future query result. Using the
predicted future query result, sensor nodes can effectively filter
out unnecessary transmissions. The contributions of this paper
are as follows:

(i) We propose a lossless sensor data compression method
to reduce the size of data transmitted. Prime numbers are
used to encode a value of each sensing attribute. Sensor
data are represented as one integer by multiplying
encoded prime numbers.

(ii) In general, sensor data exhibit strong temporal
correlations [5]. It means that the sensor data are quite
similar during a short period of time and so future values
can be predicted based on the previous measurements.
Based on this fact, we devise a filtering-based data
collection method using the previous query result.

(iii) The degree of temporal correlation varies according to
sensor data. Therefore, we devise a model to capture the
changing pattern of sensor data. Based on this model,
the future query result is accurately predicted. Using
the predicted query result, sensor nodes can filter out
unnecessary transmissions.

(iv) Extensive experiments are conducted to evaluate the
performance of the proposed approach.The results show
that the proposed approach processes iceberg queries
more energy efficiently than an existing approach while
providing a highly accurate query result.

The remainder of this paper is organized as follows. Section 2
reviews the related work. In Section 3, we present the proposed
approach for energy-efficient iceberg query processing. The
experimental results are shown in Section 4. Finally, in
Section 5, we conclude our work.
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2. RELATED WORK

The term iceberg query was first introduced to describe queries
that compute aggregate functions over an attribute (or a set of
attributes) to find aggregate values above a certain threshold [1].
The reason why they call such queries iceberg queries is that
the number of above-threshold data is often very small (the
tip of an iceberg), relative to a large amount of input data (the
iceberg). Traditionally, iceberg queries are commonly used in
many applications, including data warehousing, information
retrieval, market basket analysis in data mining, clustering and
copy detection. Fang et al. [1] propose efficient iceberg query
processing algorithms for the traditional databases in terms of
the memory usage and the disk accesses.

Recently, iceberg query processing over stream databases has
attracted much research effort. For example, iceberg queries can
be used to detect distributed denial of service attacks or discover
worms and other anomalies in network monitoring applications.
Manjhi et al. [6] study the problem of processing iceberg queries
in the union of multiple distributed data streams. They arrange
nodes in a multi-level communication structure. Each node
uses a synopsis data structure to find local icebergs, and then
sends the synopsis to its parent in the communication structure.
Different error tolerances are assigned to nodes according to
their level in the hierarchy.The approximate synopses are passed
from leaves to the root and combined incrementally within
the corresponding error tolerances. However, this approach
assumes that a globally frequent item is also frequent locally
somewhere. If data are finely distributed across all nodes so
that they do not appear much at any one location, this approach
is not appropriate.

Zhao et al. [7] propose algorithms to effectively process
iceberg queries without assuming that a globally frequent item
is also locally frequent. They propose a sampling-based scheme
and a counting-sketch-based scheme. In the sampling-based
scheme, each node samples a list of data items along with their
frequency counts and sends them to the server. In the counting-
sketch-based scheme, each node summarizes its data into a
counting sketch and samples a small percentage of identities of
the items and sends both to the server. However, this approach
is based on the flat infrastructure.

Zhao et al. [8] introduce the idea of using summable sketches
for global iceberg query processing. They sum the sketches
from individual nodes to get an aggregate sketch. Owing to
the nature of summable sketches, it does not matter how the
items are distributed along the nodes or in what order the data
are aggregated.Also, it can be applied to any topology structure.
However, they do not consider the energy saving aspect.

In a sensor network environment, sensor nodes have very
limited battery resources. Therefore, minimizing the energy
consumption is the most important issue in sensor networks.
One main strategy for reducing the energy consumption is to
do some query processing tasks in the network, as suggested
by Sharaf et al. [9] and Yao and Gehrke [10]. The in-network

aggregation reduces overall energy consumption by performing
the computation within the network and reducing the amount
of transmissions to the base station. Madden et al. [3] propose a
generic aggregation service called TAG for ad hoc networks of
TinyOS motes. They classify the types of aggregates supported
by the system, focusing on the characteristics of aggregates that
impact their performance and fault tolerance. Aggregates are
processed in network by computing over the data as they flow
through the sensors.

A second main strategy for conserving energy is using
approximation. Deshpande et al. [11] propose a model-driven
data acquisition technique. Rather than directly querying the
sensor network, they build a model from stored and current
sensor data, and answer queries by consulting the model. Sensor
nodes are used to acquire data only when the model itself
is not sufficiently rich to answer the query with acceptable
confidence. Therefore, the energy consumption of sensor nodes
can be reduced. Chu et al. [2] also propose an approximate
data collection method using probabilistic models. The basic
idea is to maintain a pair of dynamic probabilistic models over
the sensing attributes, with one copy distributed in the sensor
network and the other at the base station.At every time instance,
the base station simply computes the expected values of the
sensing attributes according to the model and uses it as the
query answer. This requires no communication. However, these
modeling approaches require an expensive learning phase to
make an appropriate model. If the constructed model does not
reflect the current data distribution, the learning phase should be
re-applied. Furthermore, these approaches are mainly focused
on processing the selection-type queries.

There also has been some work that considers more com-
plicated queries than selection. Shrivastava et al. [12] propose
a data aggregation scheme for computing approximate quan-
tiles such as median and histogram. They present a structure,
q-digest, which sensor nodes used to summarize the data they
receive into a fixed size message, with approximation bounds.

Modeling patterns and correlations in data, and using them
to reduce the data transmission rate has been a central theme
in the data compression literature [13]. By exploiting some
correlations in sensor data, the communication cost can be
reduced. Guestrin et al. [14] propose a distributed regression
for in-network modeling of sensor data. Based on the kernel
linear regression, they model the entire sensor data from all
sensor nodes. Rather than transmitting sensor data, sensor
nodes transmit constraints on the model parameters. Therefore,
it can predict the behavior of sensor data with a minimal
communication cost. Deligiannakis et al. [15] propose a data
compression technique, designed for historical data collected
in sensor networks. They split the historical data into intervals
of variable length and encode each of them using the base
signal. The values of the base signal are extracted from the
real measurements and maintained dynamically as data change.

In networking areas, there has been much research on energy-
efficient routing for sensor network environments. Sensor
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4 H. Yang and C.-W. Chung

protocols for information via negotiation [16] and Directed
diffusion [17] are data-centric routing protocols which find
routes from multiple sources to a single destination that allows
in-network aggregation of redundant data. Low energy adaptive
clustering hierarchy [18], Hybrid energy-efficient distributed
clustering [19] and GEodesic sensor clustering (GESC) [20]
are clustering-based routing protocols. In the clustering-based
routing protocol, sensor nodes are grouped into clusters and
a cluster head is selected from each cluster. The cluster head
aggregates sensor data from its member nodes and transmits
the aggregated sensor data to the base station through the other
cluster heads.Any energy-efficient routing protocol can be used
to construct the routing topology in our proposed approach.

3. PROPOSED APPROACH

The goal of our approach is to provide an energy-efficient
iceberg query processing technique in sensor networks. A
formal definition of the problem is given in Section 3.1. An
overview of our proposed approach is described in Section 3.2.
Section 3.3 provides a lossless sensor data compression
method. A filtering-based data collection method is described
in Section 3.4.

3.1. Problem definition

This study considers a wireless sensor network that consists
of the base station and n sensor nodes. It is assumed that the
base station has a continuous power supply. In contrast, the
sensor nodes are powered by batteries. Each sensor node is
equipped with k types of sensors (i.e. temperature, humidity,
soil moisture, etc.). A sensor node generates sensor data
(nodeID, v1, v2, . . . , vk, timestamp), where

(i) nodeID is the sensor node identifier;
(ii) vi is the sensing value measured by the sensor i, where

1 ≤ i ≤ k. It can be considered a value of an attribute
in relational databases;

(iii) timestamp is the time of measuring sensing values.

The range of each sensing value is set to the minimum and
maximum values that can be measured by the corresponding
sensor. It is assumed that sensing values are integers.

Since the communication range of a sensor node is limited to
its local area, only close sensor nodes can directly communicate
with each other. Therefore, a routing tree is used to transmit
sensor data to the base station. It is assumed that there is no
transmission failure. By retransmission, the transmission failure
can be solved.

Based on this sensor network environment, we devise a
best-effort approach that reduces the energy consumption of
the sensor nodes without undue sacrifice in result quality. The
prototypical iceberg query that we consider in this paper is to
find a set of distinct sensor data whose total counts across all

sensor nodes exceed a certain threshold T . The following is an
SQL form of this query:

SELECT A1, A2, . . . , Ak , count(∗)

FROM Sensors
GROUP BY A1, A2, . . . , Ak

HAVING count(∗) ≥ T

SAMPLE PERIOD x

FOR d

The SELECT clause specifies attributes and aggregates from
sensor data: Ai , where 1 ≤ i ≤ k is an attribute that represents
a sensor type. COUNT is used as an aggregate function.
Sensors represents a logical table that has sensor data generated
from all sensor nodes. The GROUP BY clause classifies sensor
data into different groups according to the specified attributes.
The HAVING clause eliminates groups that do not satisfy
the specified condition. SAMPLE PERIOD and FOR clauses
specify the rate of query answers and the life time of the query,
respectively.

Each sensor node transmits data to the base station that
consists of a set of attributes specified in the SELECT clause
and its aggregate value. It is assumed that the size of an attribute
is 64 bits and the size of the aggregate value is 32 bits because
COUNT is used as the aggregate.

The query results are maintained by the base station and
provided to users by the base station.

3.2. Overall approach

In this section, we provide an overview of our proposed
approach. Figure 1 summarizes this through an example.

To conserve energy of sensor nodes, we devise a lossless
sensor data compression method and a filtering-based data
collection method. In Fig. 1, query processing procedure at
time t = 3 is described. Initially, the base station collects the
sensor data from all sensor nodes until it has two previous
query results for time t = 1 and t = 2. A routing tree is
used for transmissions. Basically, an in-network aggregation is
performed to reduce the number of data transmitted. For the next
sampling instance t = 3, the base station predicts the possible
query result for this time using the previous query results at
t = 1 and t = 2. Since sensor nodes are distributed data
sources, sensor data from all sensor nodes should be transmitted
to the base station to find out the final aggregate values of
them. However, most of these transmissions are not the query
answer. Therefore, transmitting data, which are not the query
answer, wastes valuable energy of sensor nodes. To find out
the unnecessary transmissions within the network and suppress
these transmissions, we exploit the previous query results. Since
sensor data exhibit strong temporal correlations, we can infer
the next query result from the past one. The aggregate values
of all possible tuples are estimated using our prediction model.
A tuple consists of a set of attributes specified in the SELECT
clause. Tuples that have larger estimated aggregate values than
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Base Station

Intermediate node

Leaf node

Iceberg Query

SELECT A1, A2, …, Ak, count(*)
FROM  Sensors
GROUP BY A1, A2, …, Ak

HAVING count(*) ≥ 10
SAMPLE PERIOD x
FOR d

Query Result

Compressed 
Tuple count
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1085 12
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t = 1
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1505 19
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t = 2
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1085 1085 310
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Future Query Result1505

1085
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Comparison with the 
predicted query result

Current time t = 3
1

2

3
4

Predicted 
query result

FIGURE 1. Overview of the proposed approach.

the threshold are considered as the possible query result at t = 3.
The base station transmits this possible query result to the sensor
nodes that perform in-network aggregations (i.e. sensor nodes
except leaf nodes). Since leaf nodes only have their own sensor
data, they do not perform in-network aggregations. Therefore,
the possible query result is only sent to intermediate sensor
nodes. Starting from the leaf nodes, tuples are transmitted along
the routing tree. The size of one tuple corresponds to the number
of sensing attributes specified in the SELECT clause. Usually,
the number of sensing attributes used in the iceberg query is
large and so does the size of one tuple. Therefore, sensor nodes
consume a lot of energy due to the basic size of a tuple. To
reduce the size of one tuple, we devise a lossless sensor data
compression method. By applying this compression method to
tuples, each tuple can be represented as one integer. Sensor
nodes transmit these compressed tuples to their parent nodes.
The lossless sensor data compression method will be described
in detail in Section 3.3.

Intermediate sensor nodes perform in-network aggregations
based on the received tuples from their child nodes and its
own tuple. The predicted query result is used in this step.
Tuples that have smaller aggregate values than the threshold
are compared with the predicted query result. Since tuples that
already have larger aggregate values will be query answers, we
do not consider them. For tuples that have smaller aggregate
values than the threshold, sensor nodes filter out tuples that will
not be included in the query result based on the knowledge

of the possible query result. Therefore, our approach can
greatly reduce the energy consumption of sensor nodes. The
filtering-based data collection method will be presented in
Section 3.4.

3.3. Lossless sensor data compression

In this section, we discuss the lossless sensor data compression
method to represent data to be transmitted compactly and energy
efficiently. Radio communication dominates sensors’ energy
consumption. The amount of energy spent on communication of
data with x bytes is given by σ +δx, where σ and δ represent the
per-message and per-byte costs, respectively [21]. Therefore,
the energy consumption of sensor nodes depends on the size and
the number of data transmitted. To process the iceberg query,
sensor nodes have to transmit data that consists of k sensing
attributes (i.e. (v1, v2, . . . , vk)) at a fixed sampling rate. We call
these data tuples. Usually, the number of attributes specified
in the iceberg query is large and so is the tuple to be transmitted.
Thus, it cannot help consuming a large amount of energy due to
the basic size of one tuple. Since sensor nodes have very limited
energy resources, an effective data size reduction method is
required to save the energy consumption.

There have been many compression techniques proposed to
support lossless compression in sensor networks. Among the
techniques, S-LZW [22] was specifically devised for sensor
networks. S-LZW is an adapted version of the Lempel–
Ziv–Welch (LZW) [23] designed for resource-constrained
sensor nodes. S-LZW uses adaptive dictionary techniques
with dynamic code length. However, S-LZW suffers from
the growing dictionary problem because each new sensor
datum produces a new entry in the dictionary. For iceberg
queries, the number of distinct tuples is very large, and thus
the dictionary size becomes problematic. Lossless entropy
compression (LEC) [24], which is based on static Huffman
encoding, exploits the temporal correlation of sensor data using
a fixed dictionary. Since the dictionary size is fixed, LEC does
not suffer from the growing dictionary problem. However, LEC
requires prior knowledge of the statistical characteristics of
sensor data and thus the communication overhead is high.
Therefore, these approaches are not suitable for our considered
environment.

To reduce the size of one tuple, we use the prime numbers
based on the Fundamental Theorem of Arithmetic in the number
theory. There have been some uses of the unique property of
prime numbers in other researches such as XML [25] and radio
frequency identification data management [26]. The property
was used for an effective encoding of data for query processing
in these researches; however, we use the property for data
compression.

Theorem 3.1 (Fundamental theorem of arithmetic). Every
integer n > 1 can be represented as a product of prime factors
in only one way, apart from the order of the factors.

The Computer Journal, 2013



6 H. Yang and C.-W. Chung

For example, the prime factors of 330 are 2, 3, 5 and 11
(i.e. 330 = 2 × 3 × 5 × 11). There is no other possible set of
prime numbers that can be multiplied to make 330. Based on
this theorem, we devise the lossless sensor data compression
method. Using the unique property of prime numbers, a tuple is
efficiently compressed into one integer without introducing the
growing dictionary problem and the communication overhead
for obtaining the statistical characteristics of sensor data.

Assume that vi has a value between minvi
and maxvi

(i.e.
vi ∈ [minvi

, maxvi
]), where minvi

represents the minimum
value of the sensing attribute Ai , maxvi

represents the maximum
value of it, and 1 ≤ i ≤ k (k = # of sensing attributes).
Let D(Ai) be an increasing ordered set of all sensing values
for Ai (i.e. D(Ai) = {vi1, vi2, . . .}, where vi1 and vi2 denote
the first and the second elements of D(Ai), respectively). To
make an encoding table, the prime numbers in increasing order
starting with 2 and ending with the pth prime number are
assigned to all elements in D(Ai), where p is the sum of
the cardinalities of all D(Ai) (i.e. p = ∑k

i=1 |D(Ai)|). Let
p1 = 2 < p2 = 3 < p3 = 5 < · · · be the prime
numbers (in increasing order). Starting from vi1 of all D(Ai),
the prime numbers fromp1 topk are assigned to each vi1 until all
vil ∈ D(Ai) are processed, where l represents the cardinality
of D(Ai) that might be different between Ais depending on
the range of each Ai (v11 ⇒ 2, v21 ⇒ 3, . . . , vk1 ⇒ pk ,
v12 ⇒ pk+1, v22 ⇒ pk+2, . . . vkl ⇒ pp).

Figure 2 shows an example of the encoding table. Consider
the case where each sensor node is equipped with temperature,
humidity and soil moisture sensors. The ranges for sensing
values of temperature, humidity and soil moisture are [1, 5],
[1, 5] and [3, 6], respectively. This is used as a running example
throughout the paper. The number of all possible sensing values
is 14. Therefore, 14 smallest prime numbers are assigned
to sensing values starting from the minimum values to the
maximum values of them. The temperature value 1 is assigned
to 2, the humidity 1 is assigned to 3 and the soil moisture 3 is
assigned to 5, etc.

Based on the encoding table, a sensing value vi is
encoded to its corresponding prime number (Prime(vi)). Let
a tuple be (v1, v2, . . . , vk). By encoding all sensing values to
their corresponding prime numbers, the tuple is changed to
(Prime(v1), Prime(v2), . . . , Prime(vk)). These encoded prime

numbers are multiplied to make one integer. Therefore, we can
compactly represent an original tuple with only one integer
((v1, v2, . . . , vk) → P = (Prime(v1) × Prime(v2) × · · · ×
Prime(vk))). This one integer P can be uniquely decomposed
into prime numbers by Theorem 3.1. If a tuple consists of k

sensing attributes, where k ≥ 1, the data compression ratio
is 1/k; k is the number of attributes specified in the iceberg
query and this number is usually not small. As k increases,
we can get a higher compression ratio. In the above example,
let a tuple be (2, 4, 4). Then, temperature value 2, humidity
value 4 and soil moisture value 4 are encoded to 7, 31 and 13,
respectively ((2, 4, 4) → (7, 31, 13)). By multiplying encoded
prime numbers together, the original tuple (2, 4, 4) can be
represented as one integer 2821 (2821 = 7 × 31 × 13). The
original sensor values are easily reconstructed by finding prime
factors of 2821. Therefore, we can reduce the size of a tuple
without any loss of data and save the energy consumption of
sensor nodes.

For sensing values that are real numbers, the proposed
compression method can be applied by scaling up the original
sensing value by a factor of powers of 10. For example, a sensing
value vi is in the form of vi = a0.a1a2a3 . . ., where a0 is the
integer part of vi , and a1, a2, a3 . . . are the digits forming the
fractional part of vi .According to the digits of the fractional part,
the scaling factor is determined. If the number of the digits of
the fractional part is 2, 102 is multiplied to the original sensing
value and making it an integer. Then, the same procedure is
applied to compress sensor data.

If the range of values of a sensing attribute is large, many
prime numbers are required to make the encoding table.
Assigning prime numbers sequentially to sensing values within
domain ranges of sensing attributes may increase the value of
the compression result (an integer generated by multiplying
corresponding prime numbers of sensing values) and cause an
overflow. To prevent this problem, history information about
frequencies of sensing values is used. The sensing values of
each sensing attribute are sorted by the frequency in descending
order. Based on the sorted sensing values of each sensing
attribute, prime numbers are assigned sequentially. In the
example of Fig. 2, let the sorted sensing values of temperature,
humidity and soil moisture be (2, 5, 1, 3, 4), (2, 4, 1, 3, 5)

and (4, 3, 5, 6), respectively. Prime number 2 is assigned to

FIGURE 2. An example of an encoding table.
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FIGURE 3. An example of an encoding table based on the frequency information.

temperature 2, prime number 3 is assigned to humidity 2 and
prime number 5 is assigned to soil moisture 4. Figure 3 shows
the encoding table based on the history information about
frequencies of sensing values. The tuple (2, 4, 4) is compressed
to one integer 110 (110 = 2 × 11 × 5). Therefore, the tuple is
compressed to a smaller integer than that of the encoding table
in Fig. 2 (2821 = 7 × 31 × 13).

There are a few cases where the assigned prime numbers by
using the encoding table based on the frequency information
are larger than those by using the encoding table which is
made by assigning prime numbers sequentially to sensing
values. However, the use of the frequency information results
in assigning small numbers in most cases because frequently
generated sensing values are represented as small integers. Since
sensing values typically follow similar patterns, the proposed
scheme is beneficial.

3.4. Filtering-based data collection

The energy consumption of sensor nodes can be minimized
by reducing the number of data transmitted. The result of the
iceberg query is a set of tuples whose aggregate values exceed
a certain threshold. The transmissions of tuples whose final
aggregate values are smaller than the threshold waste valuable
energy of sensor nodes. However, the final aggregate value of
a certain tuple is determined by how many tuples generated
from other sensor nodes are same as the considered tuple. Since
sensor nodes are distributed, all sensor nodes should transmit
their tuples to the base station to determine the final aggregate
values of distinct tuples. If the possibility that a tuple belongs
to the query result can be known in advance, sensor nodes can
suppress transmissions of tuples that will not be query answers.
Thus, the energy consumption of sensor nodes can be greatly
reduced. We devise a filtering-based data collection method
based on the model that predicts the possible future query result.

Basically, an in-network aggregation is performed to reduce
the number of data transmitted. Figure 4 shows an example of
the in-network aggregation. Each leaf node in the routing tree
transmits its own compressed tuple to the parent node and the
parent node applies the in-network aggregation based on both
the received and its own tuples. Tuples are grouped according

Base Station

Intermediate node

Leaf node

1085 3

310 1

In-network 
aggregation

(2, 4, 3) (2, 4, 3) (1, 4, 3)

1085 1085 310

Original tuple

Compressed tuple

(2, 4, 3)

1085

tuple count

FIGURE 4. An example of the in-network aggregation.

to the values of sensing attributes specified in the GROUP BY
clause and then the aggregate function (COUNT) is applied to
the tuples in each group.

The final result consists of a set of tuples that satisfy
the HAVING condition (count(∗) ≥ T ). Although the in-
network aggregation can reduce the energy consumption, only
performing this is not helpful to determine whether a certain
tuple will be a query answer or not. If the possibility that a certain
tuple will be in the query result can be known in advance, we
can use this information to avoid unnecessary transmissions.
In iceberg query processing, an unnecessary transmission is
a transmission of the tuple that has the final aggregate value
smaller than the threshold.

To suppress unnecessary transmissions, topology informa-
tion is first used. Each sensor node except leaf nodes has its inter-
mediate result denoted by IR = {(rc

i , count(rc
i ))|1 ≤ i ≤ m, m

is the number of distinct tuples, rc
i = Prime(v1)× Prime(v2)×

· · · × Prime(vk), where Prime(vi) is the prime number for the
sensing value vi , and count(rc

i ) is a count value of rc
i }. Based
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on the aggregated values of rc
i (count(rc

i )), we obtain the mini-
mum and the maximum aggregate values of them. These min-
imum and maximum aggregate values are classified into three
categories as follows:

(i) Case 1 min(count(rc
i )) ≥ T ;

(ii) Case 2 min(count(rc
i )) < T and max(count(rc

i )) ≥ T ;
(iii) Case 3 max(count(rc

i )) < T .

If IR satisfies the condition of Case 1, all tuples in IR have to
be transmitted to the base station because these are the query
answers. Otherwise (Cases 2 and 3), the topology information
is used to determine whether a tuple will be included in the final
result or not. For a tuple rc

i that has a smaller count(rc
i ) than the

threshold T , the difference diffi = T − count(rc
i ) is calculated.

Since tuples are transmitted along the routing tree, a sensor node
knows all tuples from its descendant sensor nodes. However, the
sensor node cannot know tuples generated by (1) its ancestor
nodes, (2) subtrees of its sibling nodes and (3) ancestor nodes
of the sibling nodes. In other words, the sensor node only
knows tuples from its descendant nodes and itself, and others
are unknown. Let s be the number of descendant sensor nodes of
a sensor node. The number of unknown sensor nodes of it, u, is
obtained byu = n−(s+1), wheren is the total number of sensor
nodes. For rc

i , if diffi + u is smaller than T , count(rc
i ) cannot

increase by more than T . That is, although the aggregation of
all tuples from unknown sensor nodes are finished, count(rc

i ) is
still smaller than T . Therefore, rc

i cannot be the query answer.
If a tuple satisfies the condition diffi +u < T , we do not need to
transmit it. For a tuple that satisfies the condition diffi +u ≥ T ,
after finishing the aggregation of all unknown tuples, this tuple
may be included in the final result or not. In this step, sensor
nodes cannot be sure whether the tuple is the query answer or
not. Therefore, we use the previous query result for tuples that
satisfy the condition diffi + u ≥ T . Figure 5 illustrates this.

In general, there are significant temporal correlations in
sensor data. Sensor data have quite similar sensing values in
a short period of time. Therefore, the future values can be
predicted based on the previous measurements. For iceberg
query processing, we can consider that tuples in the previous
query result will not be changed significantly due to the temporal
correlation of sensor data. The temporal correlation of sensor
data can help us in estimating the next query result from the
previous one.

The basic process of using the previous query result is as
follows:

(1) The base station estimates the future count values of
tuples based on the previous query result. The detailed
explanation of how to estimate the future count values
will be given later.

(2) Tuples that have larger estimated count values are
considered as the possible future query result. These
tuples are transmitted to sensor nodes except leaf nodes.

(3) A sensor node that receives the possible future query
result from the base station compares the received

data with its intermediate result to decide which tuples
should be filtered out.

(a) If a tuple in an intermediate result is equal to any
tuple in the possible future query result, the sensor
node transmits it to the parent node.

(b) Otherwise, the tuple is not transmitted.

Figure 6 shows an example of this process. Assume that
the threshold T is 10 and all tuples in the intermediate result
satisfy the condition diffi + u ≥ T . The query result R

consists of a set of data denoted by (rc
i , count(rc

i )), where
rc
i = Prime(v1) × Prime(v2) × · · · × Prime(vk) (i.e. rc

i

is a compressed representation of the original tuple ri =
(v1, v2, . . . , vk)) and count(rc

i ) is a count value of rc
i . Let R be

{(1505, 20), (1085, 15), (874, 12)}. The base station estimates
the future count value of each tuple based on R. If the estimated
result is {(1505, 19), (1085, 13), (874, 8)}, then 1505 and 1085
are transmitted to sensor nodes because their count values are
larger than 10. A sensor node compares its intermediate result
{(1085, 3), (310, 1)} with the received data 1505 and 1085.
Although the count value of 1085 is smaller than 10, it is
transmitted to the parent node since it is equal to the received
data. In the case of 310, the sensor node does not transmit it
because it is not matched with any received data. Therefore, we
can reduce the number of transmitted data from 2 to 1.

The number of data to be transmitted can be reduced by
exploiting the temporal correlation of sensor data. However,
the degree of the temporal correlation varies according to sensor
data. Therefore, we need a well-defined model to capture the
temporal correlation in sensor data. To represent the degree of
the temporal correlation of sensor data, we consider both the age
and the changing pattern of the query result. If the timestamp
of the previous query result is a recent one compared with
the current time, we can highly trust this result. This can be

FIGURE 5. Possible cases for counts in the intermediate result.

The Computer Journal, 2013



Efficient Iceberg Query Processing in Sensor Networks 9

Base Station

Intermediate node

Leaf node

1505

1085

Intermediate Result

Previous Query Result
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1085 15

874 12

tuple count

1085 3

310 1

tuple count

Count 
Estimation

1505 19

1085 13

874 8

tuple count
Estimated Result

Threshold = 10

FIGURE 6. An example of filtering-based data collection.

formalized via a time-decaying function that assigns a weight
to the query result based on the age of it. The age of the previous
query result is a = tcurrent − tprevious, where tcurrent and tprevious

represent the current time and the previous time, respectively.

Definition 3.1. A function f (a) is a time-decaying function if
it satisfies the following properties:

(1) f (0) = 1 and 0 ≤ f (a) ≤ 1 for all a ≥ 0;
(2) f is monotone decreasing: if a1 ≥ a2, then f (a1) ≤

f (a2).

Some popular decay functions are as follows:

(i) Sliding window: For a window of size W , the function
is defined by f (a) = 1 for a < W and f (a) = 0 for
a ≥ W .

(ii) Exponential decay: The exponential decay is defined by
f (a) = e−λa for λ > 0.

(iii) Polynomial decay: The polynomial decay is defined by
f (a) = (a + 1)−α for some α > 0.

The graphs of these decay functions are given in Fig. 7. Sliding
window only considers data within the recent window of size
W .All data within the window have equal weights (i.e. 1), while
the other data not in this window have zero weights. For data
outside the window, sliding window cannot finely adjust their
weights according to the ages. Exponential decay can solve the
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FIGURE 7. Decay functions. (a) Sliding window, (b) exponential
decay and (c) polynomial decay.

problem of sliding window by differentiating the rate of change
according to the age of data. However, it has an extremely
fast decreasing rate. Since sensor data will not be changed
severely for consecutive times due to the temporal correlation,
it is not suitable for sensor data. Polynomial decay has a smooth
changing rate compared with exponential decay. It can properly
tune the decreasing rate of weight with the age. Therefore, we
use a polynomial decay as the time-decaying function. By using
the time-decaying function, we can effectively represent the
reliability of the previous query result.

To find out how many same tuples are continuously included
in the query results, we measure the similarity between the
previous query results. If there exist many same tuples within
the two consecutive previous query results, we can consider
that the degree of temporal correlation of sensor data is very
high. To represent the similarity of two previous query results
quantitatively, Cosine Similarity is used. Cosine similarity
measures the similarity by finding the cosine of the angle
between two vectors of d dimensions.

Given two closest previous query results Rt−� and Rt−(�+φ)

of the current time t , where t − � and t − (� + φ) denote the

The Computer Journal, 2013



10 H. Yang and C.-W. Chung

closest time from t and from t −�, respectively, the base station
performs the following procedures to measure the similarity
between them:

(1) Tuples in Rt−� and Rt−(�+φ) are decompressed to
restore the original tuples. The encoded prime numbers
for values of sensing attributes are obtained by the prime
factorization of the compressed tuple. Based on the
encoding table, these prime numbers are decoded as
their original sensing values.

(2) For decompressed values of each sensing attribute Ai

at time t − � and t − (� + φ), two bags, Bt−�(Ai)

and Bt−(�+φ)(Ai), are made. A bag is represented by
a set of sensing values and their count values. The
element of the bag is denoted by 〈v, c〉, where v is a
sensing value and c is its count. The elements of the
bag are sorted by v in ascending order (i.e. Bt(Ai) =
{〈vi1, count (vi1)〉, 〈vi2, count (vi2)〉, . . .}, where vi1 <

vi2 < · · · ). If the values of the decompressed one are
same, the count value of them are summed up.

(3) The similarity between Bt−�(Ai) and Bt−(�+φ)(Ai) are
calculated:

(a) The frequency vectors are made to represent the
count of each value of the sensing attribute. Extract
the count value of each sensing value from Bt−�(Ai)

and Bt−(�+φ)(Ai) and make their frequency vectors
Ft−�(Ai) and Ft−(�+φ)(Ai). The dimension of
the frequency vector is the sum of the number
of the distinct sensing values in Bt−�(Ai) and
Bt−(�+φ)(Ai). Starting from the first dimension to
the final dimension of the frequency vector, each

dimension corresponds to the sensing values of the
bags (i.e. first dimension ⇒ vi1, second dimension
⇒ vi2, . . . (in increasing order)).

(b) Calculate the cosine similarity between Ft−�(Ai)

and Ft−(�+φ)(Ai):

similarity(Ft−�(Ai), Ft−(�+φ)(Ai))

= Ft−�(Ai) · Ft−(�+φ)(Ai)

|Ft−�(Ai)||Ft−(�+φ)(Ai)| .

If two consecutive previous query results have many similar
data, similarity has a value close to 1. Figure 8 shows an example
of the similarity calculation. Assume that the current time is t

and the base station has the query results at time t −1 and t −2.
The base station decompresses the tuples of the query results.
A1, A2 and A3 denote sensing attributes such as temperature,
humidity and soil moisture. Bags are made to represent the
counts of values of the sensing attribute for time t − 1 and
t −2. For the sensing attribute A1 in the decompressed result at
t−1, the sensing value 1 exists in two tuples and their counts are
20 and 15. Thus, the total count of 1 is 35. Likewise, the counts
for the other sensing values 2 and 3 are calculated by summing
up the counts of the corresponding values. The bags for the
sensing attribute A1 are Bt−1(A1) = {〈1, 35〉, 〈2, 13〉, 〈3, 30〉}
and Bt−2(A1) = {〈1, 34〉, 〈2, 10〉, 〈3, 33〉, 〈5, 20〉}. Since the
number of distinct sensing values in Bt−1(A1) and Bt−2(A1) is
4 (1, 2, 3, 5), the dimension of the frequency vector becomes 4.
The first, second, third and fourth dimensions of the frequency
vector represent the counts of the sensing values 1, 2, 3 and 5,
respectively. The frequency vectors for time t − 1 and t − 2 are
Ft−1(A1) = (35, 13, 30, 0) and Ft−2(A1) = (34, 10, 33, 20).

FIGURE 8. An example of the similarity calculation.
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FIGURE 9. Traces of sensing attributes in the LUCE data set. (a) Ambient temperature, (b) humidity, (c) soil moisture and (d) wind direction.

Based on Ft−1(A1) and Ft−2(A1), the cosine similarity is
calculated as shown in Fig. 8.

Using the age and the temporal correlation of the query result,
the prediction model for estimating the future count of a tuple
is devised. The probability that a tuple r = (v1, v2, . . . , vk) will
be changed to r ′ = (v′

1, v
′
2, . . . , v

′
k) is computed by

p(r → r ′) =
k∏

i=1

p(vi → v′
i ).

We assume that each sensing attribute is independent.
Figure 9 shows the real traces (LUCE data set1) of ambient
temperature, humidity, soil moisture and wind direction data
over a period of one day from a single sensor node. As shown
in Fig. 9, we cannot find any correlation between different
sensing attributes.This justifies the assumption of independence
between sensing attributes. Based on the multiplication rule for
independent events, p(r → r ′) is calculated by multiplying
each probability that a sensing value vi will be changed to v′

i ,
which is denoted as p(vi → v′

i ). We calculate p(vi → v′
i ) as

follows:

(1) If vi = v′
i :

p(vi → vi)

= f (a)similarity(Ft−�(Ai), Ft−(�+φ)(Ai)),

1http://sensorscope.epfl.ch/index.php/Environmental_Data.

where a is the age of the previous query result at time
t − �.

(2) Otherwise

p(vi → v′
i )

= (1−p(vi → vi))

(1 − p(vi → vi))/

(|Dom(Ai)| − 1)|vi − v′
i |∑|Dom(Ai )|−1

i=1 (1 − p(vi → vi))/

(|Dom(Ai)| − 1)|vi − v′
i |

,

where |Dom(Ai)| is the domain size of the sensing
attribute Ai .

The probability that a sensing value will remain the same
value as the previous one, p(vi → vi), is calculated by
multiplying the time-decaying function and the similarity
between two previous query results.The time-decaying function
f (a) is used to assign a larger weight to a younger query
result. similarity(Ft−�(Ai), Ft−�+φ(Ai)) is used to measure
the degree of the temporal correlation. If the two consecutive
previous query results have many similar sensing values, the
sensor data can be considered to have a very strong temporal
correlation. Thus, a large portion of the previous query result
will be generated later in time.

The probability that a sensing value will be changed from
the previous one, p(vi → v′

i ), is calculated based on the
probability p(vi → vi). We find that 1 − p(vi → vi) is the
probability that a sensing value vi is changed to any v′

i , where
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v′
i ∈ Dom(Ai) − {vi}. Because of the nature of the physical

phenomenon, sensor data gradually increase or decrease in
a short period of time. To reflect this, |vi − v′

i | is used in
p(vi → v′

i ). For example, let the domain range of the tempera-
ture be D(temperature) = {1, 2, 3, 4, 5} and p(1 → 1) = 0.7.
Then, the probability that 1 is changed to any other value in
D(temperature) − {1} is 0.3. Since 2 will be generated with a
higher probability than 5 in a short period of time, assigning
uniform probability (1−p(1 → 1))/(|Dom(temperature)|−1)

(i.e. 0.3/4) to each value in D(temperature) − {1} is inap-
propriate. Therefore, we should give a different probability
according to the value difference between vi and v′

i . By
dividing (1 − p(1 → 1))/(|Dom(temperature)| − 1) by
the difference between 1 and the other value, we can
give a higher probability for a value similar to 1 (i.e.
p(1 → 2) = 0.3/(4 × 1), p(1 → 3) = 0.3/(4 × 2),
p(1 → 4) = 0.3/(4 × 3), p(1 → 5) = 0.3/(4 × 4)). We use
(1 − p(vi → vi))/(|Dom(Ai)| − 1)|vi − v′

i | in p(vi → v′
i ) for

this. One uses (1 − p(vi → vi))/
∑|Dom(Ai )|−1

i=1
(1 − p(vi → vi))/(|Dom(Ai)| − 1)|vi − v′

i | to make the
sum of the probabilities p(vi → v′

i ) equal to 1 − p(vi → vi)

(i.e. 0.3).
If sensing attributes are correlated with each other, the

probability p(r → r ′) is calculated by the joint probability
for the correlated with sensing attributes as follows:

p(r → r ′) = p(v1 → v′
1, v2 → v′

2, . . . , vk → v′
k).

Based on the probability p(r → r ′), the count of a tuple r is
estimated as follows:

countestimated(r) =
∑
ri∈Rt

p(ri → r)count(ri)

+
⎛
⎝ ∑

rj ∈U−Rt

p(rj → r)

⎞
⎠

×
⎛
⎝n −

∑
ri∈Rt

count(ri)

⎞
⎠ ,

where r is a considered tuple, Rt is a previous query result at t ,
ri is a tuple of Rt , count(ri) is a count value of ri , U is a set of
all possible tuples, rj is a tuple of U − Rt and n is the number
of sensor nodes.

The set of all possible tuples U is obtained by permuting
all values of the sensing attributes within their domain ranges.
Since any tuple in U can be generated for the next time, all
of them are considered to predict the future query result. We
represent by

∑
ri∈Rt

p(ri → r)count (ri) how many tuples in
Rt will be changed to r . For tuples that are in the previous
query result, the actual counts of them are used for estimation.
However, for tuples that are not in the previous query result,
U −Rt , there is no way to know their actual counts because the
base station does not have them. Therefore, we simply assume

that sensor nodes that do not generate tuples in the previous
query result can uniformly have tuples in U −Rt . By calculating
(
∑

rj ∈U−Rt
p(rj → r))(n − ∑

ri∈Ri
count (ri)), we can reflect

the possibility that tuples in U − Rt will be changed to r .
The count values of all possible tuples are predicted by the

equation of countestimated(r). Tuples that have larger counts than
the threshold are transmitted to sensor nodes and used for
suppressing the unnecessary transmissions. Therefore, we can
greatly reduce the energy consumption of sensor nodes.

However, there is a case where the temporal correlation
of sensor data is low. In this case, since sensor data change
randomly with time, the similarity between the previous query
results will be low. Therefore, we cannot accurately predict the
next query result based on the previous query result.To deal with
this case, prediction-based filtering is applied adaptively accord-
ing to the similarity of two consecutive previous query results.
If the similarity between the previous query results is below a
certain threshold, only the topology information is used to filter
out unnecessary transmissions. Otherwise, both the topology
information and the predicted query result are used for filtering.
Although this adaptive filtering increases the energy consump-
tion of sensor nodes, it can provide more accurate query results.

4. EXPERIMENTAL EVALUATION

An experimental analysis was conducted to validate the
proposed approach using our own simulator developed in Java.
The simulator uses a simplified version of the time division
multiple access protocol where sensor nodes communicate on
different time slots in order to prevent collisions.The radio range
of a sensor node is set to 150 m according to the specification of
TinyNode.2 The results demonstrate the energy efficiency and
the accuracy of the proposed approach.

4.1. Experimental environment

Data sets and setting: Real-world and synthetic data sets are
used to evaluate the proposed approach. For the real-world
data set, the LUCE data set, that is a trace of measurements
from 100 weather stations at the EPFL campus, is used. Each
weather station (i.e. a sensor node) measures nine different
sensing attributes: ambient temperature, surface temperature,
solar radiation, relative humidity, soil moisture, watermark, rain
meter, wind speed and wind direction. In the LUCE data set, we
observe that the number of distinct tuples is very small, although
the total number of tuples is very large. This corresponds to the
characteristic of the iceberg query, that the size of the output
data is extremely small compared with the size of the input
data. If the number of sensing attributes is large, this tendency
is intensified. Therefore, parts of sensing attributes are used to
show the effect of various thresholds. The sensor nodes that
have many unavailable data are not used in the experiments.

2http://www.tinynode.com/.

The Computer Journal, 2013

http://www.tinynode.com/


Efficient Iceberg Query Processing in Sensor Networks 13

To show the effects of temporal correlations of sensor data,
synthetic data sets are generated. One hundred sensor nodes are
used and their locations are determined based on the positions
of weather stations in the LUCE data set. Each sensor node
generates values for nine sensing attributes. To control the
temporal correlation of sensor data, the tcd parameter is used,
which enables us to set the degree of changes in sensing values.
Values for tcd range from 0 to 100. Based on the tcd value,
sensor nodes that will generate the same sensing values as
their previous ones are determined. The initial sensing values
of sensor nodes are randomly generated in the range [0, 20].
tcd% of sensor nodes are randomly selected to assign the same
sensing values as their previous ones. Sensing values of the other
sensor nodes are randomly generated from the range [0, 20]. For
example, if tcd = 70%, then 70% of sensor nodes will generate
the same sensing values as before and 30% of sensor nodes will
generate different sensing values from their previous ones.

To test the scalability of the proposed approach, various
sensor networks are constructed by increasing the number of
sensor nodes. Sensor nodes are randomly placed in an area of
1000 × 1000 m2 and we vary the number of sensor nodes as
300, 500 and 1000. Each sensor node generates values for nine
sensing attributes. Similar to the synthetic data set of 100 sensor
nodes, the tcd parameter is used to set the temporal correlation
of sensor data.

Although the proposed approach is not dependent on a
specific routing protocol, in order to study the behavior of
the proposed approach according to the routing protocol, the
simple First-Heard-From (FHF) routing protocol [3] and the
GESC routing protocol [20] are used to construct the routing
topology. The FHF routing protocol creates the routing tree
in such a way that the distance between any two sensor
nodes is minimized. Clustering is an effective routing topology
construction approach in sensor networks that can increase
network scalability and lifetime. Since the GESC routing
protocol is an energy-efficient protocol compared with the other
clustering protocols for sensor networks, the GESC routing
protocol is used to construct the routing topology. The GESC
routing protocol exploits the localized network structure and
the remaining energy of neighboring sensor nodes to create a
routing topology. Since the proposed approach is not dependent
on a specific routing protocol, any existing routing protocol
can be used. Table 1 summarizes the characteristics of the
routing topologies generated by the FHF routing protocol and
the GESC routing protocol. Since the results are similar for both
routing protocols, the results with the GESC routing protocol
are presented in Sections 4.2 and 4.3.

Comparison system: The performance of the proposed
approach is compared with TAG [3]. This approach proposed
an in-network aggregation to reduce the energy consumption
of sensor nodes. In order to process the iceberg query by TAG,
intermediate sensor nodes in the routing tree classify tuples
into different groups according to the GROUP BY clause and
apply the aggregate function to the groups. To the best of our

TABLE 1. Characteristics of routing topologies.

Maximum # hops Average
Routing # of sensor from a sensor node sensor node
protocol nodes to the base station degree

FHF 100 5 3
300 9 4
500 11 6

1000 15 8

GESC 100 4 3
300 7 4
500 11 7

1000 13 9

knowledge, this is the recent existing approach that can process
iceberg queries in sensor networks. Therefore, we choose the
TAG as the comparison system.

Queries: The queries used in our experiments are as follows:

SELECT A1, A2, . . . , Ak , count(∗)

FROM Sensors
GROUP BY A1, A2, . . . , Ak

HAVING count(∗) ≥ T

SAMPLE PERIOD 30s

FOR 1day

The threshold T varies from 2 to 7. As specified in the
SAMPLE PERIOD and the FOR clauses, the queries are
continuously executed every 30 s for 1 day.

Performance metrics: The performance is measured in terms
of the energy consumption and the accuracy of the query
results. Since the primary source of the energy consumption
is the communication, the amount of transmitted data is used to
represent the energy consumption. The accuracy of the query
results is evaluated using the relative error rate. The accuracy is
calculated by

accuracy =
(

1 − unreturned + diffCount

actual

)
× 100,

where unreturned represents the number of unreturned tuples
compared with the real result, diffCount represents the number
of the returned tuples that have different counts compared with
the real result and actual represents the cardinality of the real
result.

4.2. Energy consumption

Energy consumption on LUCE data set: The energy
consumption of sensor nodes is affected by the basic size of data
transmitted and the number of transmissions. The transmitted
data from the sensor nodes to the base station consist of tuples
and their aggregate values. To reduce the basic size of a tuple,
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FIGURE 10. Energy consumption comparison between CF and TAG
for the LUCE data set.

our approach proposes the lossless data compression using
prime numbers. However, TAG transmits the original tuples
themselves. Therefore, the fundamental size of one tuple is
different between TAG and our approach, which is denoted as
CF. The basic tuple size for TAG and CF is k × 64 bits and
64 bits, respectively (k = # of sensing attributes specified in
the query).

Figure 10 shows the energy consumption for various queries
over the LUCE data set. Note that the logarithmic scale (base
10) is used for the energy consumption due to the significant
performance gap between CF and TAG. If the threshold T has
a large value, the number of tuples whose aggregate values are
greater than T will be small. Therefore, we can adjust the size of
the query result by changing the threshold T . To show the effect
of the output size, the threshold value varies from 2 to 7. These
parameter values are determined by considering the minimum
number of distinct tuples in the LUCE data set.

As shown in Fig. 10, CF consumes less energy than TAG
in all cases. TAG can save energy by applying the in-network
aggregation. By grouping the distinct tuples and performing the
aggregate function (COUNT) on the groups, it can reduce the
amount of data transmitted. However, the final aggregate values
of the groups cannot be known within the network because
sensor nodes are distributed. Therefore, all tuples have to be
transmitted to the base station for query processing. However,
CF can effectively filter out tuples that will not be included
in the query result. By capturing the degree of the temporal
correlation of sensor data, CF makes a set of candidate tuples
for the future query result and transmits it to sensor nodes.
Based on them, sensor nodes can suppress the transmissions
of tuples that are not the query answers. Furthermore, CF
applies the lossless sensor data compression to reduce the size
of one tuple. Therefore, CF can greatly reduce the energy
consumption compared with TAG. As the threshold increases,
the energy consumption of CF is reduced because the output
size becomes smaller than that of the small threshold value. CF
effectively filters out unnecessary transmissions regardless of
the threshold. However, the energy consumption of TAG is not
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FIGURE 11. Analysis of the energy consumption in CF for the LUCE
data set.
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FIGURE 12. Energy consumption comparison between nCF and
TAG for the LUCE data set.

changed according to the output size because it cannot filter out
unnecessary transmissions.

In TAG, data flow in only one direction, from the sensor
nodes to the base station. Unlike TAG, in CF, transmissions
occur in both directions. To transmit sensor data from the sensor
nodes to the base station, bottom-up transmissions occur along
the routing tree. To disseminate the estimated future query
result to sensor nodes, top-down transmissions occur from the
base station to the sensor nodes. The top-down transmissions
of the estimated future query result do not occur in TAG.
Figure 11 shows an analysis of how much energy is consumed
by each transmission in CF. As shown in Fig. 11, the energy
consumption by top-down transmissions has a small portion of
the overall energy consumption. This confirms that the overhead
for transmitting the estimated future query result is low.

Figure 12 shows how much energy is consumed when the
advantage of the smaller tuple size is eliminated in CF. In this
graph, the logarithmic scale (base 10) is also used for the energy
consumption. We use one sensing attribute to make the size of
one tuple for TAG and CF the same. Lossless data compression
is not used in CF, which is denoted as nCF. This result shows the
effect of reducing the energy consumption by our filtering-based
data collection itself. Even though the energy consumption of
TAG slightly decreases by taking advantage of the reduced one
tuple size, nCF continues to consume less energy than TAG.
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FIGURE 13. Analysis of the energy consumption for synthetic data sets. (a) A sensor network of 100 sensor nodes, (b) a sensor network of
300 sensor nodes, (c) a sensor network of 500 sensor nodes and (d) a sensor network of 1000 sensor nodes.

Therefore, our filtering-based data collection is a very energy-
efficient method in itself.

Energy consumption on synthetic data sets: In this
experiment, we show the energy consumption of CF under
different degrees of temporal correlation of sensor data. The
number of sensor nodes of the sensor network is varied from
100 to 1000. The degree of temporal correlation of sensor data
is controlled by setting the tcd value when making a synthetic
data set. A high tcd value represents that sensor data have a
strong temporal correlation.

Figure 13 shows the energy consumption for CF, TAG and
restrictedCF for sensor networks of 100, 300, 500 and 1000
sensor nodes with various tcd values. The tcd value is varied
from 30 to 90%. The threshold value T is set to 5. The
logarithmic scale (base 10) is used for the energy consumption
in these figures. As shown in Fig. 13, CF consumes less energy
than TAG in all cases. The energy consumption of TAG is not
affected by the degree of temporal correlation of sensor data.
However, in CF, the energy consumption is affected by the tcd
values. Since the prediction of the future query result is based on
the similarity between two consecutive previous query results,
the prediction result is more accurate when sensor data have a
strong temporal correlation. Therefore, unnecessary sensor data
can effectively be filtered out, which leads to energy saving.

The energy consumption of CF decreases as the tcd value
decreases because there are some missing query results by

the prediction. To deal with this problem, when the similarity
of two consecutive previous query results is below a certain
threshold st , the topology information is only used to filter out
unnecessary transmissions.When the similarity increases above
the st , filtering based on the prediction results is applied. This
approach is denoted as restrictedCF in Fig. 13. The st value is
empirically set to 0.5 where values for st range from 0 to 1. The
energy consumption of restrictedCF increases compared with
that of CF because there are cases where the prediction-based
filtering cannot be used. In CF, early filtering of unnecessary
transmissions is possible based on the predicted query result
and hence the energy consumption can be reduced. However, in
restrictedCF, for cases when the similarity of two consecutive
previous query results is below the st , sensor data have to be
transmitted to ancestor sensor nodes until they reach a sensor
node that has enough topology information for filtering. Since
sensor nodes that are located close to the base station in the
routing tree have enough information for filtering based on
the network topology, filtering of unnecessary transmissions
occurs at these sensor nodes. Thus, in the case of filtering
based on the topology information, levels of sensor nodes where
filtering is performed are higher than those in CF. Although
more energy is consumed compared with CF, restrictedCF
can lower the number of missing query results and hence
generate more accurate query results than CF. The amount of
energy consumption of restrictedCF increases as the tcd value
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decreases since there are many cases where the filtering is
performed based only on the topology information.

4.3. Accuracy

Accuracy on the LUCE data set: The results of the accuracy
on the LUCE data set are given in Fig. 14. Since TAG
transmits all tuples of sensor nodes after applying the in-network
aggregation, all queries are answered correctly. Therefore, the
accuracy of TAG is always 100%. Since sensor nodes are
distributed, tuples generated from all sensor nodes have to
be transmitted to the base station to find out their global
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FIGURE 14. Accuracy for the LUCE data set.

aggregate values. However, a lot of them do not satisfy the
HAVING condition. Therefore, transmissions of these tuples
cause unnecessary waste of energy. To reduce the energy
consumption, CF applies the data compression using prime
numbers and filtering-based data collection. Since the proposed
data compression method can reconstruct the exact original
sensor data, this does not affect the accuracy of the query results.
Therefore, only the filtering-based data collection affects the
accuracy of the query results in CF. To filter out unnecessary
transmissions, CF predicts the future query result by modeling
the degree of the temporal correlation of sensor data, and uses
it to suppress unnecessary transmissions. As shown in Fig. 14,
CF provides nearly 100% accurate query results. It means that
our prediction model is accurate. Therefore, CF can provide
accurate query results while conserving energy.

Accuracy on synthetic data sets: In this experiment, the
accuracies of CF, TAG and restrictedCF for sensor networks
of 100, 300, 500 and 1000 sensor nodes are compared under
various degrees of the temporal correlation of sensor data.
For restrictedCF, the st value is set to 0.5. Figure 15 shows
the accuracy for various tcd values. The threshold value T

is set to 5. As shown in Fig. 15, the accuracy of the query
results is not affected by the size of the sensor network.
The accuracy of the query results in CF decreases as the
tcd decreases. For higher tcd values, since sensor data have
a strong temporal correlation, the future query result can be
accurately predicted by our prediction model. However, for
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FIGURE 15. Accuracy for synthetic data sets. (a) A sensor network of 100 sensor nodes, (b) a sensor network of 300 sensor nodes, (c) a sensor
network of 500 sensor nodes and (d) a sensor network of 1000 sensor nodes.
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smaller tcd values, due to the randomness of sensor data, there
exist some missing sensor data in the predicted future query
result, and hence these sensor data are filtered out. restrictedCF
can solve this problem by adaptively applying the prediction-
based filtering according to the similarity of two consecutive
previous query results. Although the energy consumption of
restrictedCF increases compared with that of CF, more accurate
query results are generated. Therefore, the iceberg query is
energy-efficiently and accurately processed by applying the
adaptive filtering based on the degree of temporal correlation of
sensor data.

5. CONCLUSIONS

To process the iceberg query in a sensor network environment,
sensor nodes should transmit their sensor data to the base station
because sensor nodes are distributed. The key characteristic of
the iceberg query is that the number of the result data is very
small relative to a large amount of input data. Therefore, there
exist a lot of unnecessary transmissions of tuples that are not to
be included in the query result. Since sensor nodes have limited
energy resources, it is impractical to transmit all sensor data to
the base station for query processing.

This paper proposes an energy-efficient iceberg query
processing technique in sensor networks. Since the energy
consumption of sensor nodes depends on the size of data
transmitted and the number of transmissions, we devise the
filtering-based data collection method based on lossless data
compression. Usually, the number of sensing attributes specified
in the query is large and so is the size of one tuple. Based on the
Fundamental Theorem of Arithmetic in the number theory, we
propose the data compression method that reduces the size of
data transmitted to the size of one sensing attribute regardless of
the number of sensing attributes specified in the SELECT clause.
Therefore, we can reduce the energy consumption caused by the
size of data transmitted. The number of transmissions is greatly
reduced by our filtering-based data collection method. Since
sensor data generally exhibit strong temporal correlations, a
large portion of the previous query result will be generated
in the following sample period. The degree of the temporal
correlation between two consecutive previous query results
is represented well by our proposed model. Based on this
model, the possible future query result is accurately predicted.
The sensor node can filter out unnecessary transmissions by
comparing the intermediate result with the predicted future
query result. Therefore, we can greatly reduce the energy
consumption caused by unnecessary transmissions.

Experiments are conducted to evaluate the performance of the
proposed approach by using real-world and synthetic data sets.
The results show that the proposed approach outperforms the
comparison system in terms of energy consumption. In addition,
the proposed approach provides nearly 100% accurate query
results.

In general, sensor data also have strong spatial correlations.
Sensor data of geographically proximate sensors are likely to
be highly correlated. Therefore, as future work, we will conduct
a study to improve our approach by exploiting the spatial
correlation of sensor data.
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